## On Normal Approximation of $\chi^2$ Distribution

Horng-Jinh Chang\* and Ming-Chen Lee

Department of Management Sciences, Tamkang University, Tamsui, Taiwan 25137, R.O.C.

### Abstract

According to the central limit theorem, if  $X_1, X_2, ..., X_{\upsilon}$  is a random sample drawn from  $\chi^2(1)$ ,

then, when  $\upsilon \to \infty$ , the distribution function of the sample mean  $\overline{X} = \frac{\sum_{i=1}^{\upsilon} X_i}{\upsilon}$  would asymptotically approximate to  $N\left(1, \frac{2}{\upsilon}\right)$ , or the distribution function of  $\frac{\overline{X} - 1}{\sqrt{\frac{2}{\upsilon}}}$  would approximate to the standard

normal distribution N(0, 1). Also, the distribution function of  $\sum_{i=1}^{v} X_i$  would asymptotically approximate to the normal distribution N(v, 2v). Many statistics textbooks or applied statistics research accept the use of a sample size of  $v \ge 30$  for the assumption of N(v, 2v) approximating to  $\overline{X_v}$ . Therefore, in the present study, computer simulation was adopted to test the required sample size v for the normal distribution to approximate to the  $\chi^2$  distribution. This information is useful for the applications of the central limit theorem.

*Key Words*: Computer Simulation, The Central Limit Theorem,  $\chi^2$  Distribution, Normal Distribution

### 1. Introduction

The normal distribution has a symmetric, unimodal, bell-shaped curve, and it is frequently applied to describe social, natural, and industrial phenomena as well as findings from academic research. For example, data from meteorological experiments, precipitation studies, and component manufacturing measurements are often analyzed and interpreted using the normal distribution. In addition, the normal distribution is also suitable for explaining errors in scientific measurements. In a sense, the normal distribution is the most important type of probability distributions in statistics. In real life, there are assorted of probability distributions, such as unimodal vs. multimodal distributions, symmetrical vs. asymmetrical distributions, high vs. low skewness distributions, and a non-skewed, nonmodal, and no-tail uniform distribution. Some of these distributions have a pattern similar to that of the normal distribution, while others may have a pattern quite distinctive from that of the normal distribution. Take the  $\chi^2$  distribution, such as the gamma distribution, derived from the normal distribution as an example, its kurtosis and skewness change according to the degrees of freedom, and this distribution is commonly used for making statistical inferences and in various statistical applications.

Let *X* be a continuous random variable, and the probability density function be

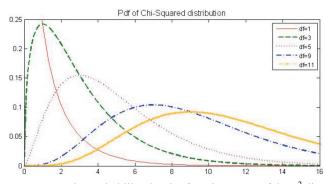
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-u)^2}{2\sigma^2}}, \quad -\infty < x < \infty, \; \sigma > 0$$
(1)

In this case, the f(x) is called a normal distributed or a normal probability density function [1,2]. It can be

<sup>\*</sup>Corresponding author. E-mail: chj@mail.tku.edu.tw

found from the normal distribution that the mean uand the variance  $\sigma^2$  affect the normal distribution curve; the mean u determines the position of the normal distribution, while the variance  $\sigma^2$  determines the degrees of dispersion of the normal distribution. Therefore, a normal distribution would vary according to the mean u and the variance  $\sigma^2$  these two important parameters. In general, the mean u and the variance  $\sigma^2$  of a normal distribution alter the shape of the curve, and to make the curve of a normal distribution more consistent, u = 0 and  $\sigma^2 = 1$  are adopted to form the standard normal distribution [3]. The standard normal distribution reference table is convenient and useful in data analysis.

Let the density function of the continuous random variable X be


$$f(x) = \frac{1}{\Gamma(\upsilon/2)2^{\frac{\upsilon}{2}}} x^{\upsilon/2 - 1} e^{-x/2}, \ x \ge 0$$
(2)

The continuous random variable X in this case has a  $\gamma^2$ distribution with degrees of freedom of v [4], and denoted by  $X \sim \chi^2(\upsilon)$ . If there are variables  $X_1 \sim \chi^2(\upsilon_1)$  and  $X_2 \sim \chi^2(\upsilon_2)$  that are mutually independent, then  $X_1 + X_2 \sim$  $\chi^2(\upsilon_1 + \upsilon_2)$ . In other words, the sum of the two variables  $X_1$  and  $X_2$  has a  $\chi^2$  distribution with degrees of freedom of  $(\upsilon_1 + \upsilon_2)$ . Therefore, if  $X_i \sim \chi^2(1)$ , then  $X = X_1 + X_2 + X$ ... $X_{\upsilon} \sim \chi^2(\upsilon)$ . A  $\chi^2$  distribution has a mean  $E(X) = \upsilon$  and avariance  $V(X) = 2\upsilon$ ; in other words, for  $\chi^2$  random variables with degrees of freedom v, the mean happens to be the degrees of freedom v, and the variance is twice the degrees of freedom. Degrees of freedom u reflects the skewness of the probability density function of the  $\chi^2$  distributions. See Figure 1. The smaller the degrees of freedom  $\upsilon$  is, the more right-skewed the probability density function curve of the  $\chi^2$  distribution is, where as the larger the degrees of freedom v is, the more symmetric the probability density function curve of the  $\chi^2$ distribution is.

According to the central limit theorem, if  $X_1$ ,  $X_2$ , ... $X_{\upsilon}$  is a random sample drawn from  $\chi^2(1)$ , then, when  $\upsilon \rightarrow \infty$ , the distribution function of the sample mean  $\overline{X} =$   $\frac{\sum_{i=1}^{\upsilon} X_i}{\upsilon}$  would asymptotically approximate to N(1, 2/\upsilon), or the distribution function of  $\frac{\overline{X} - 1}{\sqrt{\frac{2}{\upsilon}}}$  would approximate

to the standard normal distribution N(0, 1). Also, the distribution function of  $\sum_{i=1}^{\upsilon} X_i$  would asymptotically approximate to the normal distribution  $N(\upsilon, 2\upsilon)$ , or the distribution function of  $\frac{\sum_{i=1}^{\upsilon} X_i - \upsilon}{\sqrt{2\upsilon}}$  would approximate to the standard normal distribution N(0, 1). Furthermore, since  $X_1, X_2, \dots X_{\upsilon}$  is a random sample drawn from  $\chi^2(1)$ , we have  $\sum_{i=1}^{\upsilon} x_i \sim \chi^2(\upsilon)$ .

Many statistics textbooks or applied statistics research [5–13] accept the use of a sample size of  $\upsilon \ge 30$ for the assumption of  $N(\upsilon, 2\upsilon)$  approximating to  $\overline{X_{\upsilon}}$ . Nonetheless, Chang et al. showed in using central limit theorem for weibull and gamma distribution [14, 15]. The sample size of  $n \ge 30$  was not larger enough. So the random sampling distribution of sample means could not be approximated to the normal distribution. Chang et al. confirmed that when employing the central limit theorem, the sample size should vary depending on the probability distribution type. Therefore, in the present study, computer simulation was adopted to test the required sample size  $\upsilon$  for the normal distribution to approximate to the  $\chi^2$  distribution. This infor-



**Figure 1.** The probability density function curve of the  $\chi^2$  distribution with a degrees of freedom df = 1, 3, 5, 9, 11.

mation is useful for the applications of the central limit theorem.

# 2. The Sample Size of $\chi^2$ Distribution Based on Central Limit Theorem

### 2.1 Statistical Test and Computer Simulation

The study used the built-in NORM.S.INV function of Excel statistical software for simulating sampling from a  $\chi^2$  distribution random sample. With degrees of freedom of v, a sample of n = 200 was obtained, and that gave a sample mean of  $\overline{X}_1$ . The procedure was repeated 200 times to give a new sample set containing 200 sample means  $\overline{X}_1, \overline{X}_2, ..., \overline{X}_{200}$ . Next, the W-test of Shapiro and Wilk was employed (with a significance level less than 0.05) to test if the 200 sample means were normally distributed. For each degrees of freedom where v = 2, ...,400, will produce 200 test results, i.e., accepting or rejecting normal distribution, were generated. If a test result rejects the normal distribution assumption, then it is treated as a "success". The above test was performed 200 times for each degrees of freedom v, and 200 Bernoulli trial results were obtained. The number of "success" (m)was recorded and there was a success ratio of  $m' = \frac{m}{200}$ . This information indicated whether the normal distribution should be accepted or rejected. In the end, a total of  $641,592,000,000 = 200 \times (2 + 3 + 4 + ... + 400) \times 200 \times$ 200] random numbers were generated, and 79,800 ( =  $399 \times 200$ ) normality tests were performed.

The Shapiro-Wilk W-test proposed by [16] was used for normality testing, and the definition is presented below:

$$W = \left\{ \sum_{i=1}^{h} a_{in} (x_{n-i+1} - x_{(i)}) \right\}^2 / \sum_{i=1}^{n} (x_i - \overline{x})^2, x_{(1)} \le \dots \le x_{(n)}$$
(3)

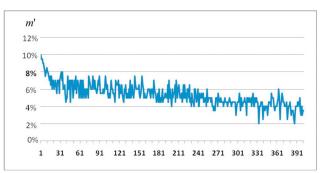
When *n* is an even number,  $h = \frac{1}{2}n$ , and if *n* is an odd number, then  $h = \frac{1}{2}(n-1)$ . Shaoiro and Wilk also provided a cross-reference table for the parameter  $a_{in}$ . Compared to other normality tests, the Shapiro-Wilk W-test is more sensitive; it works for small sample sizes (n < 20) or if there are outliers [17]. Pearson et al. [18] also mentioned that among various normality tests, the Shapiro-Wilk W-test remains very sensitive even with skewness, and they also considered the Shapiro-Wilk W-test the most robust normality test. Therefore, the study used the Shapiro-Wilk W-test statistic to be the normality test statistic for testing the sampling distribution of sample means. Using the above simulation method and statistical tests, the authors performed computer simulation using degrees of freedom v = 2, 3, 4, 5, ...350. The results are presented in Table 1.

### 2.2 Simulation Results

Table 1 shows that with a significance level less than 0.05, the ratio of the number of times rejecting the normal assumption (m') was 0.1 for the  $\chi^2$  distribution with degrees of freedom of 2, and moreover, it was found that as the degrees of freedom v increased, m', the ratio of the number of times rejecting the normality assumption became smaller. This finding demonstrated that the approximation of the normal distribution to the  $\chi^2$  distribution is more acceptable when the degrees of freedom is greater than 2. When the degrees of freedom v = 30, the ratio of the number of times rejecting the normality assumption was 0.055. Many general statistics textbooks or applied theses accept that when  $\upsilon \ge 30$ , the normal distribution can replace the  $\chi^2$  distribution. Theoretically, when the degrees of freedom  $\upsilon > 30$ , the ratio of the number of times rejecting the normality assumption should be less than 0.055. Nevertheless, from Table 1, it can be found that for v > 30, it was still frequent to get a ratios of the number of times rejecting the normality assumption (m') greater than 0.055. Apparently treating the  $\chi^2$  distribution as the normal distribution when  $\upsilon \ge 30$  is too lenient. Next, the W-test result of each degrees of freedom of the  $\chi^2$  distribution was plotted into a line graph. See Figure 2. The x-axis is the degrees of freedom, while the y-axis is the number of times rejecting the normality assumption. It can be found from Figure 2 that as the degrees of freedom of the  $\chi^2$  distribution increased from 11 to 400, the ratio of the number of times rejecting the normality assumption (m') decreased slowly, and most of the m' obtained were between 0.04 and 0.08.

| υ        | <i>m</i> ′ | υ        | m'    | υ   | m'    | υ          | m'    | υ          | m'    |
|----------|------------|----------|-------|-----|-------|------------|-------|------------|-------|
| 2        | 0.10       | 52       | 0.060 | 102 | 0.060 | 152        | 0.055 | 202        | 0.060 |
| 3        | 0.095      | 53       | 0.070 | 103 | 0.065 | 153        | 0.050 | 203        | 0.050 |
| 4        | 0.095      | 54       | 0.060 | 104 | 0.055 | 154        | 0.055 | 204        | 0.055 |
| 5        | 0.090      | 55       | 0.075 | 105 | 0.050 | 155        | 0.060 | 205        | 0.055 |
| 6        | 0.090      | 56       | 0.055 | 106 | 0.055 | 156        | 0.075 | 206        | 0.065 |
| 7        | 0.085      | 57       | 0.065 | 107 | 0.070 | 157        | 0.065 | 207        | 0.045 |
| 8        | 0.080      | 58       | 0.070 | 108 | 0.060 | 158        | 0.060 | 208        | 0.070 |
| 9        | 0.075      | 59       | 0.065 | 109 | 0.055 | 159        | 0.050 | 209        | 0.060 |
| 10       | 0.080      | 60       | 0.050 | 110 | 0.055 | 160        | 0.055 | 210        | 0.050 |
| 11       | 0.085      | 61       | 0.055 | 111 | 0.050 | 161        | 0.050 | 211        | 0.060 |
| 12       | 0.080      | 62       | 0.070 | 112 | 0.045 | 162        | 0.050 | 212        | 0.065 |
| 12       | 0.080      | 63       | 0.050 | 112 | 0.070 | 162        | 0.050 | 212        | 0.005 |
| 13       | 0.030      | 64       | 0.070 | 113 | 0.065 | 164        | 0.055 | 213        | 0.055 |
| 15       | 0.075      | 65       | 0.050 | 114 | 0.065 | 165        | 0.060 | 214        | 0.050 |
| 16       | 0.070      | 66       | 0.030 | 115 | 0.065 | 165        | 0.060 | 215        | 0.055 |
| 10       | 0.073      | 67       | 0.070 | 110 | 0.003 | 167        | 0.060 | 210        | 0.033 |
| 17       | 0.065      | 67<br>68 | 0.055 | 117 | 0.070 | 167        | 0.060 | 217        | 0.045 |
| 18<br>19 | 0.075      | 68<br>69 | 0.050 | 118 | 0.050 | 168        | 0.050 | 218<br>219 | 0.050 |
| 19<br>20 | 0.060      | 69<br>70 |       |     |       | 169<br>170 |       | 219<br>220 | 0.065 |
|          | 0.070      |          | 0.060 | 120 | 0.065 |            | 0.060 |            |       |
| 21       |            | 71<br>72 | 0.050 | 121 | 0.055 | 171        | 0.055 | 221        | 0.065 |
| 22       | 0.060      | 72       | 0.060 | 122 | 0.065 | 172        | 0.060 | 222        | 0.050 |
| 23       | 0.065      | 73       | 0.060 | 123 | 0.055 | 173        | 0.050 | 223        | 0.055 |
| 24       | 0.070      | 74       | 0.050 | 124 | 0.050 | 174        | 0.070 | 224        | 0.045 |
| 25       | 0.065      | 75       | 0.075 | 125 | 0.045 | 175        | 0.060 | 225        | 0.060 |
| 26       | 0.055      | 76       | 0.070 | 126 | 0.060 | 176        | 0.055 | 226        | 0.060 |
| 27       | 0.070      | 77       | 0.065 | 127 | 0.055 | 177        | 0.055 | 227        | 0.050 |
| 28       | 0.070      | 78       | 0.060 | 128 | 0.065 | 178        | 0.045 | 228        | 0.065 |
| 29       | 0.070      | 79       | 0.060 | 129 | 0.050 | 179        | 0.050 | 229        | 0.045 |
| 30       | 0.055      | 80       | 0.060 | 130 | 0.055 | 180        | 0.055 | 230        | 0.050 |
| 31       | 0.070      | 81       | 0.075 | 131 | 0.050 | 181        | 0.045 | 231        | 0.040 |
| 32       | 0.075      | 82       | 0.070 | 132 | 0.050 | 182        | 0.060 | 232        | 0.055 |
| 33       | 0.080      | 83       | 0.060 | 133 | 0.050 | 183        | 0.045 | 233        | 0.045 |
| 34       | 0.060      | 84       | 0.070 | 134 | 0.060 | 184        | 0.050 | 234        | 0.045 |
| 35       | 0.060      | 85       | 0.060 | 135 | 0.050 | 185        | 0.045 | 235        | 0.040 |
| 36       | 0.065      | 86       | 0.060 | 136 | 0.070 | 186        | 0.050 | 236        | 0.060 |
| 37       | 0.055      | 87       | 0.055 | 137 | 0.050 | 187        | 0.060 | 237        | 0.060 |
| 38       | 0.045      | 88       | 0.060 | 138 | 0.055 | 188        | 0.045 | 238        | 0.050 |
| 39       | 0.050      | 89       | 0.070 | 139 | 0.065 | 189        | 0.050 | 239        | 0.045 |
| 40       | 0.050      | 90       | 0.075 | 140 | 0.055 | 190        | 0.050 | 240        | 0.050 |
| 41       | 0.075      | 91       | 0.075 | 141 | 0.050 | 191        | 0.055 | 241        | 0.060 |
| 42       | 0.060      | 92       | 0.060 | 142 | 0.060 | 192        | 0.055 | 242        | 0.040 |
| 43       | 0.065      | 93       | 0.055 | 143 | 0.075 | 193        | 0.050 | 243        | 0.040 |
| 44       | 0.070      | 94       | 0.055 | 144 | 0.065 | 194        | 0.050 | 244        | 0.055 |
| 45       | 0.045      | 95       | 0.055 | 145 | 0.060 | 195        | 0.065 | 245        | 0.050 |
| 46       | 0.070      | 96       | 0.055 | 146 | 0.060 | 196        | 0.045 | 246        | 0.050 |
| 47       | 0.070      | 97       | 0.060 | 147 | 0.060 | 197        | 0.070 | 247        | 0.055 |
| 48       | 0.070      | 98       | 0.055 | 148 | 0.060 | 198        | 0.050 | 248        | 0.050 |
| 49       | 0.065      | 99       | 0.060 | 149 | 0.060 | 199        | 0.060 | 249        | 0.055 |
| 50       | 0.060      | 100      | 0.075 | 150 | 0.060 | 200        | 0.050 | 250        | 0.045 |
| 51       | 0.050      | 101      | 0.070 | 151 | 0.065 | 201        | 0.040 | 251        | 0.045 |

**Table 1.** W test results of  $\chi^2$  distribution as  $\upsilon$  varies ( $\upsilon = 2, 3, 4, ..., 400$ ; ratio *m*' in the table are reject frequency of repeating 200 W tests)


| I abic I. Commune | Table | 1. | Continue | d |
|-------------------|-------|----|----------|---|
|-------------------|-------|----|----------|---|

| υ   | <i>m</i> ′ | υ   | m'    | υ   | m'    | υ   | m'    | υ   | m'    |
|-----|------------|-----|-------|-----|-------|-----|-------|-----|-------|
| 252 | 0.050      | 282 | 0.050 | 312 | 0.050 | 342 | 0.040 | 372 | 0.040 |
| 253 | 0.050      | 283 | 0.045 | 313 | 0.045 | 343 | 0.035 | 373 | 0.040 |
| 254 | 0.040      | 284 | 0.045 | 314 | 0.030 | 344 | 0.040 | 374 | 0.045 |
| 255 | 0.060      | 285 | 0.045 | 315 | 0.040 | 345 | 0.040 | 375 | 0.025 |
| 256 | 0.045      | 286 | 0.045 | 316 | 0.050 | 346 | 0.030 | 376 | 0.030 |
| 257 | 0.050      | 287 | 0.040 | 317 | 0.050 | 347 | 0.040 | 377 | 0.040 |
| 258 | 0.050      | 288 | 0.045 | 318 | 0.045 | 348 | 0.045 | 378 | 0.040 |
| 259 | 0.050      | 289 | 0.045 | 319 | 0.050 | 349 | 0.045 | 379 | 0.045 |
| 260 | 0.050      | 290 | 0.050 | 320 | 0.045 | 350 | 0.045 | 380 | 0.040 |
| 261 | 0.045      | 291 | 0.045 | 321 | 0.045 | 351 | 0.040 | 381 | 0.030 |
| 262 | 0.050      | 292 | 0.045 | 322 | 0.050 | 352 | 0.055 | 382 | 0.035 |
| 263 | 0.040      | 293 | 0.040 | 323 | 0.040 | 353 | 0.050 | 383 | 0.035 |
| 264 | 0.040      | 294 | 0.045 | 324 | 0.050 | 354 | 0.050 | 384 | 0.035 |
| 265 | 0.035      | 295 | 0.045 | 325 | 0.055 | 355 | 0.050 | 385 | 0.025 |
| 266 | 0.040      | 296 | 0.045 | 326 | 0.040 | 356 | 0.040 | 386 | 0.020 |
| 267 | 0.035      | 297 | 0.045 | 327 | 0.040 | 357 | 0.035 | 387 | 0.030 |
| 268 | 0.050      | 298 | 0.030 | 328 | 0.050 | 358 | 0.040 | 388 | 0.040 |
| 269 | 0.050      | 299 | 0.040 | 329 | 0.045 | 359 | 0.040 | 389 | 0.040 |
| 270 | 0.050      | 300 | 0.050 | 330 | 0.050 | 360 | 0.045 | 390 | 0.040 |
| 271 | 0.040      | 301 | 0.045 | 331 | 0.045 | 361 | 0.050 | 391 | 0.045 |
| 272 | 0.055      | 302 | 0.045 | 332 | 0.045 | 362 | 0.060 | 392 | 0.045 |
| 273 | 0.050      | 303 | 0.045 | 333 | 0.020 | 363 | 0.050 | 393 | 0.040 |
| 274 | 0.045      | 304 | 0.055 | 334 | 0.040 | 364 | 0.025 | 394 | 0.050 |
| 275 | 0.045      | 305 | 0.050 | 335 | 0.040 | 365 | 0.040 | 395 | 0.035 |
| 276 | 0.050      | 306 | 0.035 | 336 | 0.040 | 366 | 0.045 | 396 | 0.030 |
| 277 | 0.045      | 307 | 0.050 | 337 | 0.045 | 367 | 0.055 | 397 | 0.040 |
| 278 | 0.045      | 308 | 0.040 | 338 | 0.045 | 368 | 0.050 | 398 | 0.030 |
| 279 | 0.045      | 309 | 0.040 | 339 | 0.025 | 369 | 0.045 | 399 | 0.035 |
| 280 | 0.040      | 310 | 0.045 | 340 | 0.045 | 370 | 0.045 | 400 | 0.035 |
| 281 | 0.045      | 311 | 0.045 | 341 | 0.040 | 371 | 0.040 |     |       |

# 3. Speed of Cutoff Value of Normal Distribution Approximating to Standard Normal Cutoff Value of $\chi^2$ Distribution

### 3.1 Normal Approximation to $\chi^2$ Distribution

According to the central limit theorem, when the degrees of freedom approaches infinity  $(\upsilon \rightarrow \infty)$ , the normal distribution can approximate the  $\chi^2$  distribution [19], i.e.,  $N(\upsilon, 2\upsilon)$  approximates to  $\chi^2$  ( $\upsilon$ ). In other words, if  $X \sim \chi^2$  ( $\upsilon$ ),  $E(X) = \upsilon$ , and  $Var(X) = 2\upsilon$ , then  $E(\overline{X}_{\upsilon}) = \upsilon$  and  $Var(\overline{X}_{\upsilon}) = \frac{2\upsilon}{\upsilon}$ . If  $E(X_i) = 1$  and  $Var(X_i) =$ 2, then  $E(\overline{X}_{\upsilon}) = 1$  and  $Var(\overline{X}_{\upsilon}) = \frac{2}{\upsilon}$ . Furthermore, we also have



**Figure 2.** Relation between the degrees of freedom v and number of times rejecting normality test m' under  $\chi^2$  distribution.

$$\overline{X}_{\upsilon} = \frac{X_1 + X_2 + \dots + X_{\upsilon}}{\upsilon} \sim N\left(1, \frac{2}{\upsilon}\right)$$
(4)

and

$$Z = \frac{\overline{X}_{\upsilon} - 1}{\sqrt{2/\upsilon}} \sim N(0, 1)$$
(5)

Substituting (4) into (5), one obtains

$$\frac{(X_1 + X_2 + \dots + X_v/v) - 1}{\sqrt{2/v}} = Z$$

where  $X_1 + X_2 + ... + X_{\upsilon} \sim \chi^2(\upsilon)$ . In addition to that, by the relation  $\frac{\chi^2(\upsilon) - \upsilon}{\sqrt{2\upsilon}} = Z$ , it implies

$$\chi^2(\upsilon) = Z\sqrt{2\upsilon} + \upsilon \tag{6}$$

Since

 $X \sim \chi^2(\upsilon)$  and  $P(X > x) = \alpha$  (7)

this gives

$$x = \chi_{\alpha}^{2}(v) \tag{8}$$

Combining (6) to (8), one has

$$P\left[X > \chi_a^2(\upsilon)\right] = \alpha \Longrightarrow P\left[Z\sqrt{2\upsilon} + \upsilon > \chi_a^2(\upsilon)\right] = \alpha$$
(9)

Rearranging (9),

$$P\left(Z > \frac{\chi_{\alpha}^{2}(\upsilon) - \upsilon}{\sqrt{2\upsilon}}\right) \Rightarrow \frac{\chi_{\alpha}^{2}(\upsilon) - \upsilon}{\sqrt{2\upsilon}} \approx z_{\alpha}$$

we obtain

$$\chi_{\alpha}^{2}(\upsilon) \approx z_{\alpha}\sqrt{2\upsilon} + \upsilon \tag{10}$$

### **3.2 Simulation Results**

The study then used the built-in  $\chi^2(\upsilon)$  of the  $\chi^2$  distribution with degrees of freedom of  $\upsilon$  provided by the Excel statistics software, and the cutoff value  $\chi^2_{\alpha}(\upsilon)$  is defined as  $P(\chi^2 > \chi^2_{\alpha}(\upsilon)) = \alpha$  minus the mean degrees of freedom  $\upsilon$  of  $\chi^2(\upsilon)$  and then divided by the standard deviation  $\sqrt{2\upsilon}$ . In other words, it is to have  $\frac{\chi^2_{\alpha}(\upsilon) - \upsilon}{\sqrt{2\upsilon}}$  undergo standard normalization. It can be found in Table 2

| Table | <b>2.</b> $\tilde{\chi}_a^2(\upsilon) =$ | $=\frac{\chi_a^2(\upsilon)-\upsilon}{\sqrt{2\upsilon}}$ | )                                                     |                                   |                                    |
|-------|------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------|------------------------------------|
| υ     | $\tilde{\chi}^2_{0.1}(\upsilon)$         | $\tilde{\chi}^2_{0.05}(\upsilon)$                       | $\tilde{\chi}^2_{\scriptscriptstyle 0.025}(\upsilon)$ | $\tilde{\chi}^2_{0.01}(\upsilon)$ | $\tilde{\chi}^2_{0.005}(\upsilon)$ |
| 1     | 1.206                                    | 2.009                                                   | 2.845                                                 | 3.984                             | 4.864                              |
| 2     | 1.303                                    | 1.996                                                   | 2.689                                                 | 3.605                             | 4.298                              |
| 3     | 1.327                                    | 1.966                                                   | 2.592                                                 | 3.407                             | 4.016                              |
| 4     | 1.336                                    | 1.940                                                   | 2.526                                                 | 3.280                             | 3.840                              |
| 5     | 1.340                                    | 1.920                                                   | 2.477                                                 | 3.190                             | 3.716                              |
| 6     | 1.341                                    | 1.903                                                   | 2.439                                                 | 3.121                             | 3.622                              |
| 7     | 1.341                                    | 1.889                                                   | 2.409                                                 | 3.067                             | 3.549                              |
| 8     | 1.340                                    | 1.877                                                   | 2.384                                                 | 3.023                             | 3.489                              |
| 9     | 1.340                                    | 1.867                                                   | 2.362                                                 | 2.985                             | 3.439                              |
| 10    | 1.339                                    | 1.858                                                   | 2.344                                                 | 2.954                             | 3.396                              |
| 11    | 1.338                                    | 1.850                                                   | 2.328                                                 | 2.926                             | 3.359                              |
| 12    | 1.337                                    | 1.842                                                   | 2.314                                                 | 2.902                             | 3.327                              |
| 13    | 1.336                                    | 1.836                                                   | 2.302                                                 | 2.881                             | 3.299                              |
| 14    | 1.335                                    | 1.830                                                   | 2.290                                                 | 2.861                             | 3.273                              |
| 15    | 1.334                                    | 1.825                                                   | 2.280                                                 | 2.844                             | 3.250                              |
| 16    | 1.333                                    | 1.820                                                   | 2.271                                                 | 2.828                             | 3.229                              |
| 17    | 1.332                                    | 1.816                                                   | 2.262                                                 | 2.814                             | 3.210                              |
| 18    | 1.332                                    | 1.812                                                   | 2.254                                                 | 2.801                             | 3.193                              |
| 19    | 1.331                                    | 1.808                                                   | 2.247                                                 | 2.789                             | 3.177                              |
| 20    | 1.330                                    | 1.804                                                   | 2.240                                                 | 2.777                             | 3.162                              |
| 21    | 1.329                                    | 1.801                                                   | 2.234                                                 | 2.767                             | 3.148                              |
| 22    | 1.329                                    | 1.798                                                   | 2.228                                                 | 2.757                             | 3.135                              |
| 23    | 1.328                                    | 1.795                                                   | 2.223                                                 | 2.748                             | 3.123                              |
| 24    | 1.327                                    | 1.792                                                   | 2.218                                                 | 2.739                             | 3.112                              |
| 25    | 1.327                                    | 1.789                                                   | 2.213                                                 | 2.731                             | 3.101                              |
| 26    | 1.326                                    | 1.787                                                   | 2.208                                                 | 2.724                             | 3.091                              |
| 27    | 1.326                                    | 1.784                                                   | 2.204                                                 | 2.717                             | 3.082                              |
| 28    | 1.325                                    | 1.782                                                   | 2.200                                                 | 2.710                             | 3.073                              |
| 29    | 1.325                                    | 1.780                                                   | 2.196                                                 | 2.703                             | 3.064                              |
| 30    | 1.324                                    | 1.778                                                   | 2.192                                                 | 2.697                             | 3.056                              |
| 31    | 1.324                                    | 1.776                                                   | 2.188                                                 | 2.691                             | 3.048                              |
| 32    | 1.323                                    | 1.774                                                   | 2.185                                                 | 2.686                             | 3.041                              |
| 33    | 1.323                                    | 1.773                                                   | 2.182                                                 | 2.680                             | 3.034                              |
| 34    | 1.322                                    | 1.771                                                   | 2.179                                                 | 2.675                             | 3.027                              |
| 35    | 1.322                                    | 1.769                                                   | 2.176                                                 | 2.670                             | 3.021                              |
| 36    | 1.321                                    | 1.768                                                   | 2.173                                                 | 2.666                             | 3.015                              |
| 37    | 1.321                                    | 1.766                                                   | 2.170                                                 | 2.661                             | 3.009                              |
| 38    | 1.321                                    | 1.765                                                   | 2.167                                                 | 2.657                             | 3.003                              |
| 39    | 1.320                                    | 1.763                                                   | 2.165                                                 | 2.653                             | 2.998                              |
| 40    | 1.320                                    | 1.762                                                   | 2.162                                                 | 2.649                             | 2.993                              |
| 41    | 1.319                                    | 1.761                                                   | 2.160                                                 | 2.645                             | 2.987                              |
| 42    | 1.319                                    | 1.759                                                   | 2.158                                                 | 2.641                             | 2.983                              |
| 43    | 1.319                                    | 1.758                                                   | 2.156                                                 | 2.638                             | 2.978                              |
| 44    | 1.318                                    | 1.757                                                   | 2.153                                                 | 2.634                             | 2.973                              |
| 45    | 1.318                                    | 1.756                                                   | 2.151                                                 | 2.631                             | 2.969                              |
| 46    | 1.318                                    | 1.755                                                   | 2.149                                                 | 2.627                             | 2.965                              |
| 47    | 1.318                                    | 1.754                                                   | 2.147                                                 | 2.624                             | 2.961                              |
| 48    | 1.317                                    | 1.752                                                   | 2.146                                                 | 2.621                             | 2.957                              |

288

| Table | e <b>2.</b> Continu              | ued                               |                                    |                                   |                                    | Table 2. Continued |                                  |                                   |                                    |                                   |                                    |
|-------|----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------------|--------------------|----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------------|
| υ     | $\tilde{\chi}^2_{0.1}(\upsilon)$ | $\tilde{\chi}^2_{0.05}(\upsilon)$ | $\tilde{\chi}^2_{0.025}(\upsilon)$ | $\tilde{\chi}^2_{0.01}(\upsilon)$ | $\tilde{\chi}^2_{0.005}(\upsilon)$ | υ                  | $\tilde{\chi}^2_{0.1}(\upsilon)$ | $\tilde{\chi}^2_{0.05}(\upsilon)$ | $\tilde{\chi}^2_{0.025}(\upsilon)$ | $\tilde{\chi}^2_{0.01}(\upsilon)$ | $\tilde{\chi}^2_{0.005}(\upsilon)$ |
| 49    | 1.317                            | 1.751                             | 2.144                              | 2.618                             | 2.953                              | 99                 | 1.308                            | 1.722                             | 2.091                              | 2.533                             | 2.842                              |
| 50    | 1.317                            | 1.750                             | 2.142                              | 2.615                             | 2.949                              | 100                | 1.308                            | 1.721                             | 2.090                              | 2.532                             | 2.840                              |
| 51    | 1.316                            | 1.750                             | 2.140                              | 2.613                             | 2.945                              | 110                | 1.307                            | 1.718                             | 2.084                              | 2.522                             | 2.828                              |
| 52    | 1.316                            | 1.749                             | 2.139                              | 2.610                             | 2.942                              | 120                | 1.306                            | 1.715                             | 2.079                              | 2.514                             | 2.817                              |
| 53    | 1.316                            | 1.748                             | 2.137                              | 2.607                             | 2.938                              | 130                | 1.305                            | 1.712                             | 2.075                              | 2.507                             | 2.808                              |
| 54    | 1.316                            | 1.747                             | 2.135                              | 2.605                             | 2.935                              | 140                | 1.304                            | 1.710                             | 2.071                              | 2.500                             | 2.800                              |
| 55    | 1.315                            | 1.746                             | 2.134                              | 2.602                             | 2.932                              | 150                | 1.304                            | 1.708                             | 2.067                              | 2.495                             | 2.792                              |
| 56    | 1.315                            | 1.745                             | 2.132                              | 2.600                             | 2.929                              | 165                | 1.303                            | 1.705                             | 2.062                              | 2.487                             | 2.782                              |
| 57    | 1.315                            | 1.744                             | 2.131                              | 2.597                             | 2.926                              | 170                | 1.303                            | 1.704                             | 2.061                              | 2.484                             | 2.779                              |
| 58    | 1.315                            | 1.743                             | 2.130                              | 2.595                             | 2.923                              | 180                | 1.302                            | 1.703                             | 2.058                              | 2.480                             | 2.773                              |
| 59    | 1.314                            | 1.743                             | 2.128                              | 2.593                             | 2.920                              | 190                | 1.302                            | 1.701                             | 2.055                              | 2.476                             | 2.768                              |
| 60    | 1.314                            | 1.742                             | 2.127                              | 2.591                             | 2.917                              | 200                | 1.301                            | 1.700                             | 2.053                              | 2.472                             | 2.763                              |
| 61    | 1.314                            | 1.741                             | 2.125                              | 2.589                             | 2.914                              | 210                | 1.301                            | 1.698                             | 2.055                              | 2.469                             | 2.759                              |
| 62    | 1.314                            | 1.740                             | 2.124                              | 2.586                             | 2.911                              | 210                | 1.300                            | 1.697                             | 2.031                              | 2.465                             | 2.755                              |
| 63    | 1.314                            | 1.740                             | 2.123                              | 2.584                             | 2.909                              | 220                | 1.300                            | 1.696                             | 2.049                              | 2.460                             | 2.755                              |
| 64    | 1.313                            | 1.739                             | 2.122                              | 2.582                             | 2.906                              | 230<br>240         | 1.300                            | 1.695                             | 2.047                              | 2.462                             | 2.731                              |
| 65    | 1.313                            | 1.738                             | 2.120                              | 2.580                             | 2.904                              | 240<br>250         | 1.299                            | 1.693                             | 2.043                              | 2.400                             | 2.747                              |
| 66    | 1.313                            | 1.738                             | 2.119                              | 2.579                             | 2.901                              | 230<br>260         | 1.299                            | 1.694                             | 2.043                              |                                   | 2.743                              |
| 67    | 1.313                            | 1.737                             | 2.118                              | 2.577                             | 2.899                              |                    |                                  |                                   |                                    | 2.454                             |                                    |
| 68    | 1.313                            | 1.736                             | 2.117                              | 2.575                             | 2.896                              | 270                | 1.299                            | 1.692                             | 2.040                              | 2.452                             | 2.737                              |
| 69    | 1.312                            | 1.736                             | 2.116                              | 2.573                             | 2.894                              | 280                | 1.298                            | 1.691                             | 2.039                              | 2.450                             | 2.734                              |
| 70    | 1.312                            | 1.735                             | 2.115                              | 2.571                             | 2.892                              | 290                | 1.298                            | 1.691                             | 2.037                              | 2.448                             | 2.732                              |
| 71    | 1.312                            | 1.735                             | 2.114                              | 2.570                             | 2.889                              | 300                | 1.298                            | 1.690                             | 2.036                              | 2.446                             | 2.729                              |
| 72    | 1.312                            | 1.734                             | 2.113                              | 2.568                             | 2.887                              | 310                | 1.298                            | 1.689                             | 2.035                              | 2.444                             | 2.726                              |
| 73    | 1.312                            | 1.733                             | 2.112                              | 2.566                             | 2.885                              | 320                | 1.297                            | 1.689                             | 2.034                              | 2.442                             | 2.724                              |
| 74    | 1.312                            | 1.733                             | 2.111                              | 2.565                             | 2.883                              | 330                | 1.297                            | 1.688                             | 2.033                              | 2.440                             | 2.722                              |
| 75    | 1.311                            | 1.732                             | 2.110                              | 2.563                             | 2.881                              | 340                | 1.297                            | 1.687                             | 2.032                              | 2.438                             | 2.720                              |
| 76    | 1.311                            | 1.732                             | 2.109                              | 2.562                             | 2.879                              | 350                | 1.297                            | 1.687                             | 2.031                              | 2.437                             | 2.718                              |
| 77    | 1.311                            | 1.731                             | 2.108                              | 2.560                             | 2.877                              | 360                | 1.296                            | 1.686                             | 2.030                              | 2.435                             | 2.716                              |
| 78    | 1.311                            | 1.731                             | 2.107                              | 2.559                             | 2.875                              | 370                | 1.296                            | 1.686                             | 2.029                              | 2.434                             | 2.714                              |
| 79    | 1.311                            | 1.730                             | 2.106                              | 2.557                             | 2.873                              | 380                | 1.296                            | 1.685                             | 2.028                              | 2.432                             | 2.712                              |
| 80    | 1.311                            | 1.730                             | 2.105                              | 2.556                             | 2.871                              | 390                | 1.296                            | 1.685                             | 2.027                              | 2.431                             | 2.710                              |
| 81    | 1.310                            | 1.729                             | 2.104                              | 2.554                             | 2.870                              | 400                | 1.296                            | 1.684                             | 2.026                              | 2.430                             | 2.708                              |
| 82    | 1.310                            | 1.729                             | 2.103                              | 2.553                             | 2.868                              | 410                | 1.296                            | 1.684                             | 2.025                              | 2.429                             | 2.707                              |
| 83    | 1.310                            | 1.728                             | 2.103                              | 2.552                             | 2.866                              | 420                | 1.295                            | 1.683                             | 2.024                              | 2.427                             | 2.705                              |
| 84    | 1.310                            | 1.728                             | 2.102                              | 2.550                             | 2.864                              | 430                | 1.295                            | 1.683                             | 2.024                              | 2.426                             | 2.704                              |
| 85    | 1.310                            | 1.727                             | 2.101                              | 2.549                             | 2.863                              | 440                | 1.295                            | 1.682                             | 2.023                              | 2.425                             | 2.702                              |
| 86    | 1.310                            | 1.727                             | 2.100                              | 2.548                             | 2.861                              | 450                | 1.295                            | 1.682                             | 2.022                              | 2.424                             | 2.701                              |
| 87    | 1.310                            | 1.726                             | 2.099                              | 2.547                             | 2.859                              | 460                | 1.295                            | 1.681                             | 2.022                              | 2.423                             | 2.700                              |
| 88    | 1.309                            | 1.726                             | 2.099                              | 2.545                             | 2.858                              | 470                | 1.295                            | 1.681                             | 2.021                              | 2.422                             | 2.698                              |
| 89    | 1.309                            | 1.726                             | 2.098                              | 2.544                             | 2.856                              | 480                | 1.295                            | 1.681                             | 2.020                              | 2.421                             | 2.697                              |
| 90    | 1.309                            | 1.725                             | 2.097                              | 2.543                             | 2.855                              | 490                | 1.294                            | 1.680                             | 2.020                              | 2.420                             | 2.696                              |
| 91    | 1.309                            | 1.725                             | 2.096                              | 2.542                             | 2.853                              | 500                | 1.294                            | 1.680                             | 2.019                              | 2.419                             | 2.694                              |
| 92    | 1.309                            | 1.724                             | 2.096                              | 2.541                             | 2.852                              | 680                | 1.293                            | 1.675                             | 2.011                              | 2.406                             | 2.678                              |
| 93    | 1.309                            | 1.724                             | 2.095                              | 2.539                             | 2.850                              | 700                | 1.292                            | 1.675                             | 2.010                              | 2.405                             | 2.676                              |
| 94    | 1.309                            | 1.724                             | 2.093                              | 2.538                             | 2.849                              | 800                | 1.292                            | 1.673                             | 2.007                              | 2.400                             | 2.670                              |
| 95    | 1.309                            | 1.724                             | 2.094                              | 2.537                             | 2.847                              | 890                | 1.291                            | 1.671                             | 2.004                              | 2.396                             | 2.665                              |
| 96    | 1.309                            | 1.723                             | 2.094                              | 2.536                             | 2.846                              | 1000               | 1.291                            | 1.670                             | 2.002                              | 2.392                             | 2.660                              |
| 97    | 1.308                            | 1.723                             | 2.093                              | 2.535                             | 2.844                              | 1100               | 1.290                            | 1.669                             | 2.000                              | 2.389                             | 2.656                              |
| 98    | 1.308                            | 1.722                             | 2.092                              | 2.535                             | 2.843                              | 1110               | 1.290                            | 1.669                             | 2.000                              | 2.389                             | 2.655                              |
| 70    | 1.500                            | 1./22                             | 2.092                              | 2.554                             | 2.045                              |                    | 1.220                            | 1.007                             | 2.000                              | 2.507                             | 2.000                              |

Table 2. Continued

Table 2. Continued

**Table 3.**  $D_a(\upsilon) = \left| \tilde{\chi}_a^2(\upsilon) - z_a \right|$ 

that with  $\alpha \in \{0.1, 0.05, 0.025, 0.01, 0.005\}$  and  $\upsilon = 1, 2, 3, 4, 5...1110$ , the smaller the degrees of freedom, the more asymmetric the distribution pattern, and similarly, the greater the degrees of freedom, the more symmetric the pattern. Moreover, the greater the  $\alpha$ , the smaller the standard normal value of the  $\chi^2$  distribution. As the degrees of freedom increased, the standard normal value of the  $\chi^2$  distribution decreased progressively. Nevertheless, only when  $\alpha = 0.1$  did the degrees of freedom start to decrease progressively. The error  $D_a(\upsilon) = \left| \tilde{\chi}_{\alpha}^2(\upsilon) - z_a \right|$ 

of  $z_a$  and  $\tilde{\chi}_a^2(\upsilon) = \frac{\chi_a^2(\upsilon) - \upsilon}{\sqrt{2\upsilon}}$  were shown in Table 3. Ac-

cording to the above, when  $\upsilon \to \infty$ ,  $\chi^2(\upsilon)$  can be approximated by the normal distribution  $N(\upsilon, 2\upsilon)$ . General statistics textbooks and applied theses use  $\upsilon \ge 30$  for the normal distribution to replace the  $\chi^2$  distribution, but it was clearly shown in Table 3 that the error was very big.

As shown in Table 3, when the degrees of freedom was 30, the smaller the  $\alpha$ , the bigger the error. For  $\chi^2_{0.1}(30)$ , the error was 0.042. With  $\chi^2_{0.05}(30)$ , the error was 0.133. With  $\chi^2_{0.025}(30)$ , the error was 0.232. With  $\chi^2_{0.01}(30)$ , the error was 0.371. With  $\chi^2_{0.005}(30)$ , the error was 0.480. Therefore, treating the  $\chi^2$  distribution as normally distributed when  $\upsilon \ge 30$  based on the central limit theorem is too lenient. It can be found from Excel that the maximum degrees of freedom is 1110, but even with degrees of freedom of 1110, there was still an error of 0.008 for  $\chi^2_{0.01}(1110)$ , and 0.024 for  $\chi^2_{0.05}(1110)$ , 0.04 for  $\chi^2_{0.005}(1110)$ .

### 3.3 Discussion

It can be found from in Table 3, with  $\alpha \in \{0.1, 0.05, 0.025, 0.01, 0.005\}$ , the investigators determined the least degrees of freedom for errors of 0.08, 0.07, 0.06, 0.05 and 0.04. It can be found in Figure 3 that the greater the  $\alpha$ , the smaller the error, and the smaller the  $\alpha$ , the greater the error. Therefore, the largest error of  $\chi^2_{0.1}$  was found to be close to 0.06, the smallest error of  $\chi^2_{0.005}$  was even as high as 0.08.

To better observe the degrees of freedom required for the normal approximation to the  $\chi^2$  distribution, in-

| υ  | $D_{0.1}(\upsilon)$ | $D_{0.05}(\upsilon)$ | $D_{0.025}(\upsilon)$ | $D_{0.01}(v)$ | $D_{0.005}(v)$ |
|----|---------------------|----------------------|-----------------------|---------------|----------------|
| 1  | 0.076               | 0.364                | 0.885                 | 1.658         | 2.288          |
| 2  | 0.021               | 0.0351               | 0.729                 | 1.279         | 1.722          |
| 3  | 0.045               | 0.321                | 0.632                 | 1.081         | 1.440          |
| 4  | 0.054               | 0.295                | 0.566                 | 0.954         | 1.264          |
| 5  | 0.058               | 0.275                | 0.517                 | 0.864         | 1.140          |
| 6  | 0.059               | 0.258                | 0.479                 | 0.795         | 1.046          |
| 7  | 0.059               | 0.244                | 0.449                 | 0.741         | 0.973          |
| 8  | 0.058               | 0.232                | 0.424                 | 0.697         | 0.913          |
| 9  | 0.058               | 0.222                | 0.402                 | 0.659         | 0.863          |
| 10 | 0.057               | 0.213                | 0.384                 | 0.628         | 0.820          |
| 11 | 0.056               | 0.205                | 0.368                 | 0.600         | 0.783          |
| 12 | 0.055               | 0.197                | 0.354                 | 0.576         | 0.751          |
| 13 | 0.054               | 0.191                | 0.342                 | 0.555         | 0.723          |
| 14 | 0.053               | 0.185                | 0.330                 | 0.535         | 0.697          |
| 15 | 0.052               | 0.180                | 0.320                 | 0.518         | 0.674          |
| 16 | 0.051               | 0.175                | 0.311                 | 0.502         | 0.653          |
| 17 | 0.050               | 0.171                | 0.302                 | 0.488         | 0.634          |
| 18 | 0.050               | 0.167                | 0.294                 | 0.475         | 0.617          |
| 19 | 0.049               | 0.163                | 0.287                 | 0.463         | 0.601          |
| 20 | 0.048               | 0.159                | 0.280                 | 0.451         | 0.586          |
| 21 | 0.047               | 0.156                | 0.274                 | 0.441         | 0.572          |
| 22 | 0.047               | 0.153                | 0.268                 | 0.431         | 0.559          |
| 23 | 0.046               | 0.150                | 0.263                 | 0.422         | 0.547          |
| 24 | 0.045               | 0.147                | 0.258                 | 0.413         | 0.536          |
| 25 | 0.045               | 0.144                | 0.253                 | 0.405         | 0.525          |
| 26 | 0.044               | 0.142                | 0.248                 | 0.398         | 0.515          |
| 27 | 0.044               | 0.139                | 0.244                 | 0.391         | 0.506          |
| 28 | 0.043               | 0.137                | 0.240                 | 0.384         | 0.497          |
| 29 | 0.043               | 0.135                | 0.236                 | 0.377         | 0.488          |
| 30 | 0.042               | 0.133                | 0.232                 | 0.371         | 0.480          |
| 31 | 0.042               | 0.131                | 0.228                 | 0.365         | 0.472          |
| 32 | 0.041               | 0.129                | 0.225                 | 0.360         | 0.465          |
| 33 | 0.041               | 0.128                | 0.222                 | 0.354         | 0.458          |
| 34 | 0.040               | 0.126                | 0.219                 | 0.349         | 0.451          |
| 35 | 0.040               | 0.124                | 0.216                 | 0.344         | 0.445          |
| 36 | 0.039               | 0.123                | 0.213                 | 0.340         | 0.439          |
| 37 | 0.039               | 0.121                | 0.210                 | 0.335         | 0.433          |
| 38 | 0.039               | 0.120                | 0.207                 | 0.331         | 0.427          |
| 39 | 0.038               | 0.118                | 0.205                 | 0.327         | 0.422          |
| 40 | 0.038               | 0.117                | 0.202                 | 0.323         | 0.417          |
| 41 | 0.037               | 0.116                | 0.200                 | 0.319         | 0.411          |
| 42 | 0.037               | 0.114                | 0.198                 | 0.315         | 0.407          |
| 43 | 0.037               | 0.113                | 0.196                 | 0.312         | 0.402          |
| 44 | 0.036               | 0.112                | 0.193                 | 0.308         | 0.397          |
| 45 | 0.036               | 0.111                | 0.191                 | 0.305         | 0.393          |
| 46 | 0.036               | 0.110                | 0.189                 | 0.301         | 0.389          |
| 47 | 0.036               | 0.109                | 0.187                 | 0.298         | 0.385          |
| 48 | 0.035               | 0.107                | 0.186                 | 0.295         | 0.381          |
| 49 | 0.035               | 0.106                | 0.184                 | 0.292         | 0.377          |
| -  |                     |                      |                       |               |                |

| Table     | e <b>3.</b> Continu | ued           |                |               |                | Table 3. Continued |                     |                |                |                |                       |
|-----------|---------------------|---------------|----------------|---------------|----------------|--------------------|---------------------|----------------|----------------|----------------|-----------------------|
| υ         | $D_{0.1}(\upsilon)$ | $D_{0.05}(v)$ | $D_{0.025}(v)$ | $D_{0.01}(v)$ | $D_{0.005}(v)$ | υ                  | $D_{0.1}(\upsilon)$ | $D_{0.05}(v)$  | $D_{0.025}(v)$ | $D_{0.01}(v)$  | $D_{0.005}(v)$        |
| 50        | 0.035               | 0.105         | 0.182          | 0.289         | 0.373          | 100                | 0.026               | 0.076          | 0.130          | 0.206          | 0.264                 |
| 51        | 0.034               | 0.105         | 0.180          | 0.287         | 0.369          | 110                | 0.025               | 0.073          | 0.124          | 0.196          | 0.252                 |
| 52        | 0.034               | 0.104         | 0.179          | 0.284         | 0.366          | 120                | 0.024               | 0.070          | 0.119          | 0.188          | 0.241                 |
| 53        | 0.034               | 0.103         | 0.177          | 0.281         | 0.362          | 130                | 0.023               | 0.067          | 0.115          | 0.181          | 0.232                 |
| 54        | 0.034               | 0.102         | 0.175          | 0.279         | 0.359          | 140                | 0.022               | 0.065          | 0.111          | 0.174          | 0.224                 |
| 55        | 0.033               | 0.101         | 0.174          | 0.276         | 0.356          | 150                | 0.022               | 0.063          | 0.107          | 0.169          | 0.216                 |
| 56        | 0.033               | 0.100         | 0.172          | 0.274         | 0.353          | 165                | 0.021               | 0.060          | 0.102          | 0.161          | 0.206                 |
| 57        | 0.033               | 0.099         | 0.171          | 0.271         | 0.350          | 170                | 0.021               | 0.059          | 0.101          | 0.158          | 0.203                 |
| 58        | 0.033               | 0.098         | 0.170          | 0.269         | 0.347          | 180                | 0.020               | 0.058          | 0.098          | 0.154          | 0.197                 |
| 59        | 0.032               | 0.098         | 0.168          | 0.267         | 0.344          | 190                | 0.020               | 0.056          | 0.095          | 0.150          | 0.192                 |
| 60        | 0.032               | 0.097         | 0.167          | 0.265         | 0.341          | 200                | 0.019               | 0.055          | 0.093          | 0.146          | 0.187                 |
| 61        | 0.032               | 0.096         | 0.165          | 0.263         | 0.338          | 210                | 0.019               | 0.053          | 0.095          | 0.140          | 0.187                 |
| 62        | 0.032               | 0.095         | 0.164          | 0.260         | 0.335          | 210                | 0.019               | 0.055          | 0.091          | 0.140          | 0.179                 |
| 63        | 0.032               | 0.095         | 0.163          | 0.258         | 0.333          | 220                | 0.018               | 0.052          | 0.087          | 0.140          | 0.175                 |
| 64        | 0.031               | 0.094         | 0.162          | 0.256         | 0.330          | 230<br>240         | 0.018               | 0.051<br>0.050 | 0.087          | 0.130          | 0.175                 |
| 65        | 0.031               | 0.093         | 0.160          | 0.254         | 0.328          |                    | 0.018               | 0.030          |                |                |                       |
| 66        | 0.031               | 0.093         | 0.159          | 0.253         | 0.325          | 250                |                     |                | 0.083          | 0.131          | 0.167                 |
| 67        | 0.031               | 0.092         | 0.158          | 0.251         | 0.323          | 260                | 0.017               | 0.048          | 0.082          | 0.128          | 0.164                 |
| 68        | 0.031               | 0.091         | 0.157          | 0.249         | 0.320          | <b>270</b>         | 0.017               | 0.047          | 0.080          | 0.126          | 0.161                 |
| 69        | 0.030               | 0.091         | 0.156          | 0.247         | 0.318          | 280                | 0.016               | 0.046          | 0.079          | 0.124          | 0.158                 |
| 70        | 0.030               | 0.090         | 0.155          | 0.245         | 0.316          | 290                | 0.016               | 0.046          | 0.077          | 0.122          | 0.156                 |
| 71        | 0.030               | 0.090         | 0.154          | 0.244         | 0.313          | 300                | 0.016               | 0.045          | 0.076          | 0.120          | 0.153                 |
| 72        | 0.030               | 0.089         | 0.153          | 0.242         | 0.311          | 310                | 0.016               | 0.044          | 0.075          | 0.118          | 0.150                 |
| 73        | 0.030               | 0.088         | 0.152          | 0.240         | 0.309          | 320                | 0.015               | 0.044          | 0.074          | 0.116          | 0.148                 |
| 74        | 0.030               | 0.088         | 0.151          | 0.239         | 0.307          | 330                | 0.015               | 0.043          | 0.073          | 0.114          | 0.146                 |
| 75        | 0.029               | 0.087         | 0.150          | 0.237         | 0.305          | 340                | 0.015               | 0.042          | 0.072          | 0.112          | 0.144                 |
| 76        | 0.029               | 0.087         | 0.149          | 0.236         | 0.303          | 350                | 0.015               | 0.042          | 0.071          | 0.111          | 0.142                 |
| 77        | 0.029               | 0.086         | 0.148          | 0.234         | 0.301          | 360                | 0.014               | 0.041          | 0.070          | 0.109          | 0.140                 |
| 78        | 0.029               | 0.086         | 0.147          | 0.233         | 0.299          | 370                | 0.014               | 0.041          | 0.069          | 0.108          | 0.138                 |
| 79        | 0.029               | 0.085         | 0.146          | 0.231         | 0.297          | 380                | 0.014               | 0.040          | 0.068          | 0.106          | 0.136                 |
| 80        | 0.029               | 0.085         | 0.145          | 0.230         | 0.295          | 390                | 0.014               | 0.040          | 0.067          | 0.105          | 0.134                 |
| 81        | 0.028               | 0.084         | 0.144          | 0.228         | 0.294          | 400                | 0.014               | 0.039          | 0.066          | 0.104          | 0.132                 |
| 82        | 0.028               | 0.084         | 0.143          | 0.227         | 0.292          | 410                | 0.014               | 0.039          | 0.065          | 0.103          | 0.131                 |
| 83        | 0.028               | 0.083         | 0.143          | 0.226         | 0.290          | 420                | 0.013               | 0.038          | 0.064          | 0.101          | 0.129                 |
| 84<br>85  | 0.028               | 0.083         | 0.142          | 0.224         | 0.288          | 430                | 0.013               | 0.038          | 0.064          | 0.100          | 0.128                 |
| 85        | 0.028               | 0.082         | 0.141          | 0.223         | 0.287          | 440                | 0.013               | 0.037          | 0.063          | 0.099          | 0.126                 |
| 86<br>87  | 0.028               | 0.082         | 0.140          | 0.222         | 0.285          | 450                | 0.013               | 0.037          | 0.062          | 0.098          | 0.125                 |
| 87        | 0.028               | 0.081         | 0.139          | 0.221         | 0.283          | 460                | 0.013               | 0.036          | 0.062          | 0.097          | 0.124                 |
| 88        | 0.027               | 0.081         | 0.139          | 0.219         | 0.282          | 470                | 0.013               | 0.036          | 0.061          | 0.096          | 0.122                 |
| 89        | 0.027               | 0.081         | 0.138          | 0.218         | 0.280<br>0.279 | 480                | 0.013               | 0.036          | 0.060          | 0.095          | 0.121                 |
| <b>90</b> | 0.027               | 0.080         | 0.137          | 0.217         |                | 490                | 0.012               | 0.035          | 0.060          | 0.094          | 0.120                 |
| 91<br>02  | 0.027               | 0.080         | 0.136          | 0.216         | 0.277          | 500                | 0.012               | 0.035          | 0.059          | 0.093          | 0.118                 |
| 92<br>03  | 0.027               | 0.079         | 0.136          | 0.215         | 0.276          | <b>680</b>         | 0.012               | 0.030          | 0.051          | 0.099          | 0.102                 |
| 93<br>04  | 0.027               | 0.079         | 0.135          | 0.213         | 0.274          | 700                | 0.011               | 0.030          | 0.051          | 0.079          | 0.102                 |
| 94<br>05  | 0.027               | 0.079         | 0.134          | 0.212         | 0.273          | 800                | 0.010               | 0.030          | 0.030          | 0.079          | 0.100                 |
| 95<br>06  | 0.027               | 0.078         | 0.134          | 0.211         | 0.271          | 800<br>890         | 0.010               | 0.028          | 0.047          | 0.074<br>0.070 | 0.094                 |
| 96<br>07  | 0.026               | 0.078         | 0.133          | 0.210         | 0.270          | 1000               | 0.009               | 0.020          | 0.044          | 0.070          | 0.089                 |
| 97<br>08  | 0.026               | 0.077         | 0.132          | 0.209         | 0.268          | 1000<br>1100       | 0.009               | 0.023          | 0.042<br>0.040 | 0.068<br>0.063 | 0.084<br><b>0.080</b> |
| 98<br>00  | 0.026               | 0.077         | 0.132          | 0.208         | 0.267          |                    |                     |                |                |                |                       |
| 99        | 0.026               | 0.077         | 0.131          | 0.207         | 0.266          | 1110               | 0.008               | 0.024          | 0.040          | 0.063          | 0.079                 |

Table 3. Continued

Table 3. Continued

formation in Figure 3 was expressed in Table 4. It can be found that it is more appropriate to apply the central limit theory with a bigger  $\alpha$  because the greater the  $\alpha$ , the smaller the degrees of freedom required for the normal approximation. The least degrees of freedom required for an error less than 0.08 is  $\upsilon = 90$  for  $\chi^2_{0.05}$ ,  $\upsilon = 270$  for  $\chi^2_{0.025}$ ,  $\upsilon = 680$  for  $\chi^2_{0.01}$ , and  $\upsilon = 1100$  for  $\chi^2_{0.005}$ . The least degrees of freedom required for an error less than 0.07 is  $\upsilon = 120$  for  $\chi^2_{0.05}$ ,  $\upsilon = 360$  for  $\chi^2_{0.025}$ , and  $\upsilon = 890$  for  $\chi^2_{0.01}$ . The least degrees of freedom required for an error less than 0.06 is  $\upsilon = 6$  for  $\chi^2_{0.1}$ ,  $\upsilon = 165$  for  $\chi^2_{0.05}$ ,  $\upsilon = 480$  for  $\chi^2_{0.025}$ , and  $\upsilon = 1100$  for  $\chi^2_{0.01}$ . The least degrees of freedom required for an error less than 0.05 is v = 17 for  $\chi^2_{0.1}$ ,  $\upsilon = 240$  for  $\chi^2_{0.05}$ , and  $\upsilon = 700$  for  $\chi^2_{0.025}$ . The least degrees of freedom required for an error less than 0.04 is v = 34for  $\chi^2_{0,1}$ ,  $\upsilon = 380$  for  $\chi^2_{0,05}$ , and  $\upsilon = 1100$  for  $\chi^2_{0,025}$ .

In order to test the accuracy of the least degrees of freedom required for the normal approximation to the  $\chi^2$  distribution in Table 4, the investigators examined the relation among the standard normal value of the  $\chi^2$  distribution, and the error  $D_a(\upsilon)$  and degrees of freedom  $\upsilon$  of

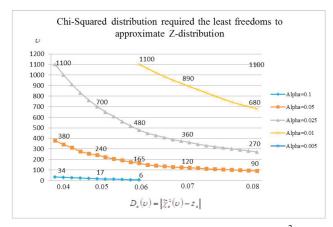



Figure 3. The least degrees of freedom required for  $\chi^2$  distribution for errors ranged between 0.04 and 0.08.

**Table 4.** The least degrees of freedom required for normal approximation to  $\chi^2$  distribution

| normal approximation to $\chi$ and instruction               |     |      |       |      |       |  |  |  |  |
|--------------------------------------------------------------|-----|------|-------|------|-------|--|--|--|--|
| $     \begin{array}{c}                                     $ | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 |  |  |  |  |
| 0.08                                                         |     | 90   | 270   | 680  | 1100  |  |  |  |  |
| 0.07                                                         |     | 120  | 360   | 890  |       |  |  |  |  |
| 0.06                                                         |     | 165  | 480   | 1100 |       |  |  |  |  |
| 0.05                                                         | 17  | 240  | 700   |      |       |  |  |  |  |
| 0.04                                                         | 34  | 380  | 1100  |      |       |  |  |  |  |

 $z_a$ . The results in Table 3 showed a tendency between  $D_a(\upsilon)$  and the degrees of freedom  $\upsilon$ . The study then used the inverse regression model  $D_\alpha(\upsilon) = b_0 + b_1 / \upsilon + \varepsilon$  to demonstrate this tendency. With  $\alpha \in \{0.1, 0.05, 0.025, 0.01, 0.005\}$ , the error  $D_a(\upsilon)$  was set to be 0.08, 0.07, 0.06, 0.05 and 0.04, and the coefficient of determination and the p-value of the regression model were listed in Table 5. It can be found from Table 5 that there was a significant association between  $D_a(\upsilon)$  and the degrees of freedom  $\upsilon$ . Moreover, the coefficient of determination  $R^2$  was between 0.882 and 1.000. Overall, the explanatory power of the least degrees of freedom required by the normal approximation to the  $\chi^2$  distribution was excellent.

### 4. Conclusions

The second section examined whether the normal approximation can be applied to the  $\chi^2$  distribution with degrees of freedom of  $\upsilon$ . The investigators tested if the sample mean of a random sample of a size of  $\upsilon$  randomly drawn from  $\chi^2(1)$  can be approximated to the normal distribution. An approximated value *m'* of the probability of type I error was obtained from computer simulation. It was found that *m'* decreased slowly (mostly between 0.04 and 0.08) with an increase in the degrees of freedom of the  $\chi^2$  distribution. It was also observed that the speed of the normal approximation to the  $\chi^2$  distribution was fast when the degrees of freedom was greater than 2. Although the speed of approximation was high, it was nev-

**Table 5.** Regression model: coefficient of determination $R^2$  and P-value

| K allo                          | a P-value | ;       |         |         |         |
|---------------------------------|-----------|---------|---------|---------|---------|
| $R^2 \alpha$<br>(P)<br>$D_a(v)$ | 0.1       | 0.05    | 0.025   | 0.01    | 0.005   |
| 0.08                            | 2         | 0.977   | 0.989   | 0.999   | 1.000   |
|                                 |           | (0.000) | (0.000) | (0.000) | (0.000) |
| 0.07                            |           | 0.974   | 0.996   | 0.999   | · /     |
|                                 |           | (0.000) | (0.000) | (0.001) |         |
| 0.06                            |           | 0.979   | 0.996   | 1.000   |         |
|                                 |           | (0.000) | (0.000) | (0.000) |         |
| 0.05                            | 0.882     | 0.985   | 0.997   | . ,     |         |
|                                 | (0.000)   | (0.000) | (0.000) |         |         |
| 0.04                            | 0.940     | 0.996   | 0.998   |         |         |
|                                 | (0.000)   | (0.000) | (0.000) |         |         |

ertheless still not acceptable. In section 3, the standard normal value of the  $\chi^2$  distribution and the cutoff value of the standard normal distribution were compared, and it was found that an increase in the degrees of freedom of the  $\chi^2$  distribution was associated with a smaller difference between the standard normal value of the  $\chi^2$  distribution and the cutoff value of the standard normal distribution. The above result was similar to the result presented in section 2.

It was also observed that the computer simulation results in Table 1 (section 2) and the errors  $D_a(\upsilon) = |\tilde{\chi}_{\alpha}^2(\upsilon) - z_a|$  in Table 3 (section 3) were consistent. For example, the values *m'* in Table 1 were mostly between 0.04 and 0.08, and the main errors in Table 3 were also between 0.04 and 0.08. Next, it can be found in Figure 3 that when  $\alpha = 0.05$ , the least degrees of freedom required for errors of 0.08, 0.07, 0.06, 0.05, and 0.04 were 90, 120, 165, 240, and 380 respectively. Compared with the degrees of freedom of 90, 120, 165, 240, and 380 in Table 1, the ratios of the number of times rejecting the normality assumption were 0.075, 0.065, 0.06, 0.05, and 0.04 respectively, indicating a high consistency between the two, i.e., *m'* in Table 1 and errors in Table 3, in testing the normal approximation to the  $\chi^2$  distribution.

Taken together, the computer simulation results in section 2 showed that most ratios of the number of times rejecting the normal assumption of the degrees of freedom greater than 30 ( $\nu > 30$ ) were greater than the ratio of the number of time rejecting the normal assumption of  $\upsilon = 30$ . When applying the central limit theorem, apparently, the use of  $\upsilon \ge 30$ , preferred by general statistics textbooks or applied theses and research, for accepting the normal approximation to the random distribution of the sample mean, i.e., having the normal distribution replacing the random distribution, is too lenient. In section 3, the standard normal value of the  $\chi^2$  distribution and the error of the standard normal distribution were used to estimate the least degrees of freedom required for the normal approximation to the  $\chi^2$  distribution. It was shown that treating the  $\chi^2$  distribution as the normal distribution when  $\upsilon \ge 30$  may satisfy the criteria for  $\alpha \ge 0.1$  in Table 4, but when  $\alpha < 0.1$ , the use of degrees of freedom greater than 30 for determining if the central limit theorem can be applied or not is inappropriate, and moreover, the degrees of freedom may not.

### References

- De Moivre, A., *The Doctrine of Chances*, New York: Cambridge Univ. (2013, [1738]).
- [2] Laplace, P. S., *A Philosophical Essay on Probabilities*, New York: Dover (1951, [1812]).
- [3] Fisher, R. A., *Statistical Methods for Research Work*ers, New Delhi: Cosmo (1925).
- [4] Plackett, R. L., "Karl Pearson and the Chi-squared Test," *International Statistical Review/Revue Internationale de Statistique*, Vol. 51, No. 1, pp. 59–72 (1983). doi: 10.2307/1402731
- [5] Box, G. E. P., Hunter, W. G. and Hunter, J. S., Statistics for Experiments: an Introduction to Design, Data Analysis and Modeling, 2<sup>nd</sup> ed., New York: Wiley (2005).
- [6] Chang, H. J., Statistics, Taipei: Hwa Tai (2002).
- [7] Keller, G. and Warrack, B., Statistics for Management and Economics, 6<sup>th</sup> ed., Pacific Grove: Thomson (2002).
- [8] Hodges Jr, J. L. and Lehmann, E. L., Basic Concepts of Probability and Statistics, 2<sup>nd</sup> ed., Philadelphia: Society for Industrial and Applied Math (2005). doi: 10. <u>1137/1.9780898719123.ch8</u>
- [9] Devore, J. L. and Berk, K. N., Modern Mathematical Statistics with Applications, New York: Wiley (2007).
- [10] Hogg, R. V., Tanis, E. A., and Rao, M. J. M., *Probability and Statistical Inference*, NY: Macmillan (2010).
- [11] Walpole, R. E., Probability & Statistics for Engineering and the Scientists, 9<sup>th</sup> ed., New York: Pearson (2011).
- [12] Ramachandran, K. M. and Tsokos, C. P., *Mathematical Statistics with Applications*, Burlington: Academic Press (2014).
- [13] Devore, J. L., Probability and Statistics for Engineering and the Sciences, 8<sup>th</sup> ed., Boston: Brooks/Cole (2011). <u>doi: 10.2307/2532427</u>
- [14] Chang, H. J., Huang, K. C. and Wu, C. H., "Determination of Sample Size in Using Central Limit Theorem for Weibull Distribution," *International Journal of Information and Management Sciences*, Vol. 17, No. 3, pp. 31–46 (2006).
- [15] Chang, H. J., Wu, C. H., Ho, J. F. and Chen, P. Y., "On Sample Size in Using Central Limit Theorem for Gamma Distribution," *International Journal of Infor-*

*mation and Management Sciences*, Vol. 19, No. 1, pp. 153–174 (2008).

- [16] Shapiro, S. S. and Wilk, M. B., "An Analysis of Variance Test for Normality (Complete Samples)," *Biometrika*, Vol. 52, pp. 591–611 (1965). <u>doi: 10.1093/</u> <u>biomet/52.3-4.591</u>
- [17] Shapiro, S. S., Wilk, M. B. and Chen, H. J., "A Comparative Study of Various Tests for Normality," *Journal of the American Statistical Association*, Vol. 63, No. 324, pp. 1343–1372 (1968). doi: 10.2307/2285889
- [18] Pearson, E. S., D'agostino, R. B. and Bowman, K. O., "Tests for Departure from Normality: Comparison of Powers," *Biometrika*, pp. 231–246 (1977). <u>doi: 10.</u> <u>1093/biomet/64.2.231</u>
- [19] Sanders, M., Characteristic Function of the Central Chi-squared Distribution (2009). http://www. planetmathematics.com/CentralChiDistr.pdf.

Manuscript Received: Dec. 30, 2016 Accepted: Jul. 25, 2017